Magnesium carbonates in ultramafic rocks : carbon dioxide transformations in crustal environments

Placeholder Show Content

Abstract/Contents

Abstract
Magnesium carbonate mineralization in Earth's crust occurs in a variety of geologic settings, including hydrothermal and mineral ore systems to sedimentary, weathering, and biogenic environments. Tectonic, chemical, and isotopic descriptions of magnesium carbonates and host ultramafic lithologies constrain the geologic conditions of the interaction between CO2-rich fluids with magnesium silicate minerals. Studying carbonate mineralization in ultramafic rocks is important not only for fundamental understanding of Earth processes, but also for assessing the potential of sequestering anthropogenic CO2 in ultramafic rocks. Mineral carbon sequestration, considered to be the longest-lasting mechanism for subsurface storage of anthropogenic CO2, harnesses the reactivity of ultramafic rocks with CO2-rich fluids to form magnesium carbonates. In my thesis, I study natural analogues of mineral carbon sequestration with the objective of determining the geologic parameters that govern magnesium carbonate mineralization in ultramafic rocks. This objective is reached by utilizing (1) equations of state of H2O-CO2 fluid mixtures; (2) hydrogen, carbon, oxygen, and neodymium isotope systematics; and (3) clumped-isotope thermometry to determine the tectonic and geochemical parameters related to the emplacement of magnesite (MgCO3) vein ores in peridotite of the Del Puerto ophiolite within the California Coast Ranges. My study of the transformations of CO2-rich fluids to magnesium carbonates through interaction with ultramafic rocks has applications to other worldwide magnesium carbonate deposits, provides constraints on CO2 sequestration in ultramafic rocks, and illuminates fundamental questions regarding geochemical pathways in weathering, hydrothermal, and mineral ore systems.

Description

Type of resource text
Form electronic; electronic resource; remote
Extent 1 online resource.
Publication date 2016
Issuance monographic
Language English

Creators/Contributors

Associated with García Del Real, Pablo Gerardo
Associated with Stanford University, Department of Geological Sciences.
Primary advisor Bird, Dennis K
Primary advisor Maher, Katharine
Thesis advisor Bird, Dennis K
Thesis advisor Maher, Katharine
Thesis advisor Brown, G. E. (Gordon E.), Jr
Thesis advisor Sleep, Norman H
Advisor Brown, G. E. (Gordon E.), Jr
Advisor Sleep, Norman H

Subjects

Genre Theses

Bibliographic information

Statement of responsibility Pablo Gerardo García Del Real.
Note Submitted to the Department of Geological Sciences.
Thesis Thesis (Ph.D.)--Stanford University, 2016.
Location electronic resource

Access conditions

Copyright
© 2016 by Pablo Gerardo Garcia Del Real
License
This work is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported license (CC BY-NC).

Also listed in

Loading usage metrics...