Investing thermo-fluidic performance of si-based embedded microchannels-3D manifold cooling system for high power density electronic applications

Placeholder Show Content

Abstract/Contents

Abstract
High performance and economically viable cooling solutions must be developed to reduce weight and volume, allowing for a wide-spread utilization of hybrid electric vehicles. However, the continued drive for higher device and packaging densities has led to extreme heat fluxes on the order of 1 kW/cm2 that requires aggressive microchannel cooling strategies in order to maintain the device junction temperature ~ 200 C. The traditional embedded microchannel cooling heat sinks suffer from high pressure drop due to small channel dimensions and long flow paths in 2D-plane. Utilizing direct "embedded cooling" strategy in combination with top access 3D-manifold strategy reduces the pressure drop by nearly an order of magnitude. In addition, it provides more temperature uniformity across large area chips and it is less prone to flow instability in two-phase boiling heat transfer. This dissertation presents a series of studies to develop an effective microchannel-based heat exchanger with a fluid router system, the Embedded Microchannels-3D Manifold Cooler (or EMMC). The overall microfabrication efforts for the EMMCs are presented. The configuration of the target EMMC design is introduced and two major fabrication challenges are discussed. For single-phase flow, thermo-fluidic behavior of the EMMC is experimentally examined and validated by a conjugate numerical simulation model. DI water and R-245fa are used as working fluids and the maximum heat transfer rate of 100 kW/m2-K was measured with DI water. Furthermore, the conjugate numerical simulation modeling is heavily used to predict the geometric effect on the thermo-fluidic performance of different EMMCs and used to develop correlations to predict friction factor and Nusselt number of the system. For two-phase flow, forced-convective subcooled boiling is confirmed by the experiments and a systematic trial to calculate exit vapor quality has been made based on a few assumptions. The highly pressurized subcooled boiling delays onset-of-nucleate boiling in the microchannels and this strong condensation effect allows the EMMC to remove higher heat fluxes with low void fraction inside of the channels. The present research motivates further study into flow visualization and different types of boiling heat transfer. The better understanding to the underlying physics of the EMMC will be a key to develop more effective heat exchanger design for high-power density applications

Description

Type of resource text
Form electronic resource; remote; computer; online resource
Extent 1 online resource
Place California
Place [Stanford, California]
Publisher [Stanford University]
Copyright date 2020; ©2020
Publication date 2020; 2020
Issuance monographic
Language English

Creators/Contributors

Author Jung, Ki Wook
Degree supervisor Goodson, Kenneth E, 1967-
Thesis advisor Goodson, Kenneth E, 1967-
Thesis advisor Asheghi, Mehdi
Thesis advisor Senesky, Debbie
Degree committee member Asheghi, Mehdi
Degree committee member Senesky, Debbie
Associated with Stanford University, Department of Mechanical Engineering.

Subjects

Genre Theses
Genre Text

Bibliographic information

Statement of responsibility Ki Wook Jung
Note Submitted to the Department of Mechanical Engineering
Thesis Thesis Ph.D. Stanford University 2020
Location electronic resource

Access conditions

Copyright
© 2020 by Ki Wook Jung
License
This work is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported license (CC BY-NC).

Also listed in

Loading usage metrics...