# Dynamic pricing with demand model uncertainty

## Abstract/Contents

- Abstract
- Pricing decisions often involve a tradeoff between learning about customer behavior to increase long-term revenues, and earning short-term revenues. In this thesis we examine that tradeoff. Whenever a firm is not certain about how its customers will respond to price changes, there is an opportunity to use price as a tool for learning about a demand curve. Most firms try to solve the tradeoff between learning and earning by managing these two goals separately. A common practice is to first estimate the parameters of the demand curve, and then choose the optimal price, assuming the parameter estimates are accurate. In this thesis we show that this conventional approach is far from being optimal, running the risk of incomplete learning--a negative statistical outcome in which the decision maker stops learning prematurely. We also propose several remedies to avoid the incomplete learning problem, and guard against poor performance. In Chapter 1, we model a learn-and-earn problem using a theoretical framework in which a seller has a prior belief about the demand curve for its product, and updates his belief upon observing customer responses to successive sales attempts. We assume that the seller's prior is a binary distribution, i.e. one of two demand curves is known to apply, although our analysis can be extended to any finite prior. In this setting, we first analyze the myopic Bayesian policy (MBP), which is a stylized representative of the estimate-and-then-optimize policies described above. Our analysis makes three contributions to the literature: first, we show that under the MBP the seller's beliefs can get stuck at a confounding value, leading to poor revenue performance. This result elucidates incomplete learning as a consequence of myopic pricing. Our second contribution is the development of a constrained variant of the MBP as a way to tweak the MBP in the binary-prior setting. By forbidding prices that are not sufficiently informative, constrained MBP (CMBP) avoids the incomplete learning problem entirely, and moreover, its expected performance gap relative to a clairvoyant who iv knows the underlying demand curve is bounded by a constant independent of the sales horizon. Finally, we generalize the CMBP family to obtain more flexible pricing policies that are suitable in case the seller has an arbitrary prior on model parameters. The incomplete learning result and the pricing policies we design have a practical significance. Because firms have no means to check whether they are suffering from incomplete learning, the myopic policies used in practice need to be modified with some kind of forced price experimentation, and our policies provide guidelines on how price experimentation can be employed to prevent incomplete learning. In Chapter 2, we consider several research questions: for example, when a seller has been charging an incumbent price for a very long time, how can he make use of the information contained in that incumbent price? Or, when a seller offers multiple products with substitutable demand, can he safely employ an independent price experimentation strategy for each product? More importantly, what if the particular pricing policies in literature are not feasible in a given business setting? To handles such cases, can we derive general principles that identify the essential ingredient of successful price experimentation policies? We address these questions using a fairly general dynamic pricing model, where a monopolist sells a set of products over a given time horizon. The expected demand for products is given by a linear curve, the parameters of which are not known by the seller. The seller's goal is to learn the parameters of the demand curve as he keeps trying to earn revenues. This chapter makes four main contributions to the learning-and-earning literature. First, we formulate an incumbent-price problem, where the seller starts out knowing one point on its demand curve, and show that the value of information contained in the incumbent price is substantial. Second, unlike previous studies that focus on a particular form of price experimentation, we derive general sufficient conditions for accumulating information in a near-optimal manner. We believe that practitioners can use these conditions as guidelines to design successful pricing policies in various settings. Third, we develop a unifying theme to obtain performance bounds in operations management problems with model uncertainty. We employ (i) the concept of Fisher information to derive natural lower bounds on regret, and (ii) martingale theory to analyze the estimation errors and generate well-performing policies. Finally, we analyze the pricing of multiple products with substitutable demand. Our analysis shows that multi-product pricing is not a straightforward repetition of single-product pricing. Learning in a high dimensional price space essentially requires sufficient "variation" in the directions of successive price vectors, which brings forth the idea of orthogonal pricing. In Chapter 3, we extend our analysis to the case where information can become obsolete. The particular dynamic pricing problem we consider includes a seller who tries to simultaneously learn about a time-varying demand curve, and earn sales revenues. We conduct a simulation study to evaluate the revenue performance of several pricing policies in this setting. Our results suggest that policies designed for static demand settings do not perform well in time-varying demand settings. Moreover, if the demand environment is not very noisy and the changes are not very frequent, a simple modification of the estimate-and-then-optimize approach, which is based on a moving time window, performs reasonably well in changing demand environments.

## Description

Type of resource | text |
---|---|

Form | electronic; electronic resource; remote |

Extent | 1 online resource. |

Publication date | 2012 |

Issuance | monographic |

Language | English |

## Creators/Contributors

Associated with | Keskin, Nuri Bora, Mr |
---|---|

Associated with | Stanford University, Graduate School of Business. |

Primary advisor | Harrison, J. Michael, 1944- |

Primary advisor | Zeevi, Assaf |

Thesis advisor | Harrison, J. Michael, 1944- |

Thesis advisor | Zeevi, Assaf |

Thesis advisor | Lai, T. L |

Advisor | Lai, T. L |

## Subjects

Genre | Theses |
---|

## Bibliographic information

Statement of responsibility | Nuri Bora Keskin. |
---|---|

Note | Submitted to the Graduate School of Business. |

Thesis | Thesis (Ph.D.)--Stanford University, 2012. |

Location | electronic resource |

## Access conditions

- Copyright
- © 2012 by Nuri Bora Keskin

## Also listed in

Loading usage metrics...