Designing polymer electrolytes for alkaline anion exchange membrane fuel cells

Placeholder Show Content

Abstract/Contents

Abstract
Increasing global demand and dependence on fossil fuels, coupled with environmental concerns arising from their use, have sparked interest in alternative energy sources. Hydrogen-powered fuel cells are a promising solution, offering a clean, scalable method for energy production. The most prominent low-temperature fuel cell devices today operate under an acidic environment, using a semi-permeable proton exchange membrane (PEM) to separate the two electrodes. However, their caustic operating conditions present unique stability and activity issues for the metal catalysts and ultimately necessitates the use of platinum-group materials, severely limiting commercial viability. A potential solution is to operate the fuel cell device under an alkaline environment using an anion exchange membrane (AEM), transporting hydroxide ions in lieu of protons. The basic environment opens the door for cheaper catalysts based on nickel and molybdenum, eliminating the cost barrier associated with PEM fuel cells. Unfortunately, typical AEMs exhibit poorer ionic conductivity and stability compared to traditional acidic membranes (e.g. Nafion), offsetting any potential cost advantage they may afford. This dissertation discusses design rationales towards enhancing the macroscopic properties of AEMs. Specifically, I present two experimental design motifs for improving the device viability of AEMs. In the first case, I present a semi-interpenetrating network design where a linear AEM ionomer is stabilized by a crosslinked poly(styrene-co-divinylbenzene) matrix. The crosslinked network acts as a reinforcing scaffold, dramatically increasing dimensional stability while maintaining excellent anion conductivity. Prototypical single-stack fuel cells with enhanced performance and stability have been fabricated from these materials, validating the design choices. In the second approach, I demonstrate the ability to increase hydroxide conductivity by tuning the nanostructure of the polymer electrolyte. Specifically, I show that tethering hydrophilic poly(ethylene glycol) grafts onto a benzyltrimethylammonium polysulfone benchmark AEM results in phase-separated, water-rich domains on the order of 5 to 10 nm. These domains serve as an ion transport pathway, facilitating the diffusion of hydroxide anions and consequently enhancing the efficiency of hydroxide conduction. Finally, in order to better understand the phase behavior and structure-property relationships of typical AEM materials, we have developed coarse-grained simulations and fundamental polymer theory to elucidate the thermodynamic behavior of random copolymers. We find that both the stochastic distribution of monomers along the polymer backbone as well as the overall stiffness of the polymer chain heavily influences its phase behavior (i.e., morphology and critical point). The ultimate objective is to provide not only a theoretical basis for understanding and explaining structure-property relationships in existing AEM materials, but to provide a set of general design guidelines moving forward.

Description

Type of resource text
Form electronic; electronic resource; remote
Extent 1 online resource.
Publication date 2015
Issuance monographic
Language English

Creators/Contributors

Associated with He, Steve Sidi
Associated with Stanford University, Department of Chemical Engineering.
Primary advisor Frank, C. W
Thesis advisor Frank, C. W
Thesis advisor Jaramillo, Thomas Francisco
Thesis advisor Spakowitz, Andrew James
Advisor Jaramillo, Thomas Francisco
Advisor Spakowitz, Andrew James

Subjects

Genre Theses

Bibliographic information

Statement of responsibility Steve Sidi He.
Note Submitted to the Department of Chemical Engineering.
Thesis Thesis (Ph.D.)--Stanford University, 2015.
Location electronic resource

Access conditions

Copyright
© 2015 by Steve Sidi He

Also listed in

Loading usage metrics...