Relative Permeability of Near-Miscible Fluids in Compositional Simulators

Placeholder Show Content

Abstract/Contents

Abstract
The relative permeability functions are a key parameter in Darcy`s law extension for modeling multiphase flow. They are empirical functions that lump the effects of complex interactions between flowing fluids and the porous medium, but they are usually reported as functions of saturation only. The dependence of the relative permeability on phase identification can lead to significant complications in near-miscible displacements. We present an analysis of existing methods that aim to account for miscibility effects by including compositional dependence in the relative permeability functions. The solution evolution in compositional space is analyzed, and the impact of compositional changes in the relative permeabilities on simulation results and performance is quantified. We show the sensitivity of different methods to the choice of reference points used, and we provide guidelines to limit the modification of the relative permeabilities to physically reasonable amounts. We use the Gibbs free energy based strategy with some modifications. The new approach was implemented in a general-purpose simulator (AD-GPRS), and tested on a wide range of compositional displacements. We have found that including any compositional dependence in the relative permeability near the critical point improves the nonlinear convergence significantly. Only slight differences are observed in the final saturation distributions and well production rates. The new approach, which applies a correction to the area above the critical tie line extension, results in smoother transitions between the single and two phase regions. In summary, we show a clear advantage of incorporating compositional dependence in the relative permeability in terms of nonlinear performance. This is especially clear in displacements near the critical point (near-miscible). The differences between different models are sensitive to the reference points used, which can only be validated with experimental evidence and a more solid physical foundation. We provide a basic framework in the AD-GPRS simulator for possible further investigation into this topic.

Description

Type of resource text
Date created September 2015

Creators/Contributors

Author Al-Zayer, Ala Nabeel
Primary advisor Tchelepi, Hamdi
Advisor Voskov, Denis
Degree granting institution Stanford University, Department of Energy Resources Engineering

Subjects

Subject School of Earth Energy & Environmental Sciences
Genre Thesis

Bibliographic information

Access conditions

Use and reproduction
User agrees that, where applicable, content will not be used to identify or to otherwise infringe the privacy or confidentiality rights of individuals. Content distributed via the Stanford Digital Repository may be subject to additional license and use restrictions applied by the depositor.

Preferred citation

Preferred Citation
Al-Zayer, Ala Nabeel. (2015). Relative Permeability of Near-Miscible Fluids in Compositional Simulators. Stanford Digital Repository. Available at: https://purl.stanford.edu/tt874xc9394

Collection

Master's Theses, Doerr School of Sustainability

View other items in this collection in SearchWorks

Contact information

Also listed in

Loading usage metrics...