InAlN/GaN high electron mobility transistors for Venus surface exploration

Placeholder Show Content

Abstract/Contents

Abstract
Historical and proposed missions to the surface of Venus have been severely limited in both scope and duration by the lack of robust microelectronics that can operate within Venus' extreme environment. Traditional silicon technology cannot survive on Venus without the use of expensive and bulky active cooling measures due to the scalding surface temperature of 465°C. To address this technological gap and enable extended duration robotic surface exploration on Venus, I propose the use of wide-bandgap gallium nitride (GaN) technology for uncooled microelectronics (e.g., sensors, micromechanical resonators, transistors). In this thesis, I present original research on the design and microfabrication of InAlN/GaN high electron mobility transistors (HEMTs), which leverage a two-dimensional electron gas (2DEG) conducting channel and can provide sensing, power, and telecommunications for a Venus lander or rover. I explore the use of several Schottky gate electrode materials that are attractive candidates for reliable high-temperature operation. The experimental results from electrically characterizing HEMTs utilizing these gate materials up to 600°C in air for durations of up to 6 days are presented. I then analyze Schottky barrier properties and make recommendations for engineering superior Schottky contacts. The electrical operation of HEMTs exposed to simulated Venus surface conditions (465°C, > 90 bar, supercritical CO2 ambient) for up to 10 days is presented. Finally, I present the first every demonstration of an uncooled GaN device successfully operating in situ simulated Venus surface conditions. The in situ experiment concluded after 5 days and 21 hours of device operation, which is a 70-fold greater duration than the 2 hour record operating length of silicon-based microelectronics used on the Venera 13 mission. As a whole, these contributing proof-of-concept experiments support the use of the InAlN/GaN HEMT platform and provide a road map for further maturing this technology for uncooled microelectronics.

Description

Type of resource text
Form electronic resource; remote; computer; online resource
Extent 1 online resource.
Place California
Place [Stanford, California]
Publisher [Stanford University]
Copyright date 2022; ©2022
Publication date 2022; 2022
Issuance monographic
Language English

Creators/Contributors

Author Eisner, Savannah Ryann
Degree supervisor Senesky, Debbie
Thesis advisor Senesky, Debbie
Thesis advisor Chowdhury, Srabanti
Thesis advisor Saraswat, Krishna
Degree committee member Chowdhury, Srabanti
Degree committee member Saraswat, Krishna
Associated with Stanford University, Department of Electrical Engineering

Subjects

Genre Theses
Genre Text

Bibliographic information

Statement of responsibility Savannah Ryann Benbrook Eisner.
Note Submitted to the Department of Electrical Engineering.
Thesis Thesis Ph.D. Stanford University 2022.
Location https://purl.stanford.edu/tn416bm3231

Access conditions

Copyright
© 2022 by Savannah Ryann Eisner
License
This work is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported license (CC BY-NC).

Also listed in

Loading usage metrics...