Mid-infrared laser diagnostics for chemical kinetics study of oxygenates

Placeholder Show Content

Abstract/Contents

Abstract
Biofuels are classified as renewable because the carbon present in the vegetable oil or animal fat feedstocks originates from carbon dioxide already present in the atmosphere. One of the current focuses on biofuel-based combustion research is the design of advanced energy conversion devices using complex reaction mechanisms. The development of these mechanisms requires a large experimental database to ensure accuracy of computational predictions. Infrared laser-absorption diagnostics are widely used in combustion research for fast, sensitive, and non-intrusive measurements of species concentration, temperature, and pressure. This thesis explores three new areas of laser diagnostic research: (a) mid-infrared diagnostics, (b) sensing in multiphase flows, and (c) applications to shock tube chemical kinetics. A novel distributed-feedback quantum-cascade laser (DFB-QCL) near 4.7 um was investigated to develop a new mid-infrared absorption sensor for in situ measurements of carbon monoxide (CO) and temperature in combustion gases. The laser provides convenient access to the stronger vibrational bands of CO than was possible previously, enabling ppm-level detectivity with an optical path length of 10 cm at high temperatures between 1000-2000 K. Wavelength modulation spectroscopy with 1f-normalized 2f detection (WMS-2f/1f) of CO2 was developed for accurate temperature sensing in multiphase combustion flows. In this method, two tunable diode lasers with wavelengths near 2.7 um were used to measure time-varying gas temperature during the evaporation of shock-heated fuel aerosols. These recently developed mid-IR laser absorption diagnostics were then applied in studying the thermal decomposition of oxygenates (biofuel surrogates) by measuring species concentration time-histories behind reflected shock waves. In a particular study of methyl formate (the simplest biodiesel surrogate), the reaction rate constants of methyl formate unimolecular decomposition were measured using the mid-IR CO absorption behind reflected shock waves. Detailed comparisons of the measured methanol and CO time-histories with the model predictions were made. Sensitivity and reaction pathway analyses for these oxygenated fuel components were performed, leading to rate recommendations with improved model performance.

Description

Type of resource text
Form electronic; electronic resource; remote
Extent 1 online resource.
Publication date 2013
Issuance monographic
Language English

Creators/Contributors

Associated with Ren, Wei
Associated with Stanford University, Department of Mechanical Engineering.
Primary advisor Hanson, Ronald
Thesis advisor Hanson, Ronald
Thesis advisor Bowman, Craig T. (Craig Thomas), 1939-
Thesis advisor Davidson, David
Advisor Bowman, Craig T. (Craig Thomas), 1939-
Advisor Davidson, David

Subjects

Genre Theses

Bibliographic information

Statement of responsibility Wei Ren.
Note Submitted to the Department of Mechanical Engineering.
Thesis Thesis (Ph.D.)--Stanford University, 2013.
Location electronic resource

Access conditions

Copyright
© 2013 by Wei Ren
License
This work is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported license (CC BY-NC).

Also listed in

Loading usage metrics...