Understanding morphology evolution in printed organic solar cells

Placeholder Show Content

Abstract/Contents

Abstract
Polymer-based organic photovoltaics (OPVs) have emerged as a promising renewable energy candidate suitable for inexpensive and scalable production, being lightweight, flexible, and amenable to low-energy solution processing. However, despite having surpassed 10% power conversion efficiency (PCE) - widely held as the threshold for commercial viability - OPVs are still mostly constrained to lab-scale devices fabricated by spin coating. Efforts to translate to scalable roll-to-roll printing trail significantly in efficiency, commonly by an order of magnitude, highlighting the need to better understand the processing-morphology-performance relationship in the context of linear printing methods. The work presented will focus on two aspects of OPV development: 1) process control to translate from spin coating to printing in order to achieve scalable high-performance devices, and 2) application of improved tools for nanoscale morphological characterization. To the former, a thermodynamic model of phase separation is presented for a model polymer:fullerene system. Next we investigate a high-performance system which has demonstrated > 10% PCE via spincoating but only exhibits 1% PCE when roll-to-roll printed due to differences in drying dynamics and phase separation. OPV bulk heterojunctions are characterized using synchrotron X-ray scattering techniques, elucidating the impact of a critical residual chemical additive on the phase-separated morphology. It is discovered that excessive additive residence time within the semi-dry film gives rise to a hierarchal morphology that severely degrades device performance. Using the understanding gained in this study, we are able to achieve a printed OPV with 5.33% PCE, which is among the highest performing roll-to-roll OPVs to date. To the latter, we address the fact that commonly used microscopy techniques suffer from significant shortcomings for imaging OPVs. We demonstrate the first application of a technique known as Photo-induced Force Microscopy (PiFM) for imaging OPVs with nanoscale chemical specificity. Results from image processing are corroborated with established synchrotron methods and photovoltaic device performance, revealing excellent quantitative agreement. Further, we demonstrate that images from atomic force microscopy (AFM) and PiFM show poor correlation, highlighting the need to move beyond standard AFM for morphology characterization of bulk heterojunctions. We emphasize that PiFM is high-throughput, lab-scale, ambient, and requires no special sample preparation, filling an important underserved role in imaging of OPVs.

Description

Type of resource text
Form electronic resource; remote; computer; online resource
Extent 1 online resource.
Place California
Place [Stanford, California]
Publisher [Stanford University]
Copyright date 2018; ©2018
Publication date 2018; 2018
Issuance monographic
Language English

Creators/Contributors

Author Gu, Kevin Li
Degree supervisor Bao, Zhenan
Thesis advisor Bao, Zhenan
Thesis advisor Salleo, Alberto
Thesis advisor Toney, Michael Folsom
Degree committee member Salleo, Alberto
Degree committee member Toney, Michael Folsom
Associated with Stanford University, Department of Chemical Engineering.

Subjects

Genre Theses
Genre Text

Bibliographic information

Statement of responsibility Kevin Li Gu.
Note Submitted to the Department of Chemical Engineering.
Thesis Thesis Ph.D. Stanford University 2018.
Location electronic resource

Access conditions

Copyright
© 2018 by Kevin Li Gu
License
This work is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported license (CC BY-NC).

Also listed in

Loading usage metrics...