Tools to facilitate autonomous quadrotor cinematography

Placeholder Show Content

Abstract/Contents

Abstract
There is considerable interest in using orientable cameras mounted on unmanned quadrotor aircraft for cinematography. These quadrotor cameras can fly to unique vantage points and execute dynamic camera moves in 3D space. Unfortunately, traditional methods of using quadrotor cameras to capture video, inherited from methods for manually piloting remote-controlled aircraft, does not consider the needs of cinematographers and requires much skill and dexterity. In this thesis, we present an alternative approach. Our key insight is to reify concepts from traditional and virtual filmmaking into tools for cinematographers. These tools enable the user to express their cinematic intent directly, while we automate flying the quadrotor camera. First, we build a tool for designing and autonomously executing quadrotor-based camera shots. Our tool enables the user to compose shots visually using keyframes, and precisely specify shot timing using easing curves. The user can preview her resulting shot in a virtual environment before flying, and automatically capture shots in the real world with a single button click using commercially available quadrotors. Since some visual compositions of shots are more favored than others, we next present a tool that automatically computes static shots based on well-established visual composition principles and canonical shots from cinematography literature. Furthermore, our tool calculates feasible, safe, and visually pleasing transitions between shots using a novel real-time trajectory planning algorithm. Using our tool, the user can capture shots that follow cinematic conventions without spending cognitive effort on setting up individual compositions, or specifying how to move between compositions. Our quadrotor camera must know where the subjects are with sufficient accuracy to faithfully capture these canonical shots of people. To that end, we present a platform for accurately localizing multiple objects. By using RTK GPS and IMU sensors, our platform provides centimeter-accurate tracking and decimeter-accurate quadrotor control in a large-scale outdoor environment. In combination, this work enables novices and experts alike to capture high-quality video footage using quadrotors.

Description

Type of resource text
Form electronic; electronic resource; remote
Extent 1 online resource.
Publication date 2017
Issuance monographic
Language English

Creators/Contributors

Associated with Joubert, Niels
Associated with Stanford University, Computer Science Department.
Primary advisor Hanrahan, P. M. (Patrick Matthew)
Thesis advisor Hanrahan, P. M. (Patrick Matthew)
Thesis advisor Agrawala, Maneesh
Thesis advisor Alonso, Juan José, 1968-
Thesis advisor Card, Stuart K
Advisor Agrawala, Maneesh
Advisor Alonso, Juan José, 1968-
Advisor Card, Stuart K

Subjects

Genre Theses

Bibliographic information

Statement of responsibility Niels Joubert.
Note Submitted to the Department of Computer Science.
Thesis Thesis (Ph.D.)--Stanford University, 2017.
Location electronic resource

Access conditions

Copyright
© 2017 by Niels Joubert
License
This work is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported license (CC BY-NC).

Also listed in

Loading usage metrics...