Joint inversion of production and time-lapse seismic data : application to norne field

Placeholder Show Content

Abstract/Contents

Abstract
Time-lapse seismic has evolved as an important diagnostic tool in efficient reservoir characterization and monitoring. Reservoir models, optimally constrained to seismic response, as well as flow response, can provide a better description of the reservoir and thus more reliable forecast. This dissertation focuses on different aspects of joint inversion of time-lapse seismic and production data for reservoir model updating, with application to the Norne field in the Norwegian Sea. This work describes a methodology for joint inversion of production and time-lapse seismic data, analyzes sensitive parameters in the joint inversion, identifies sensitive rock physics parameters for modeling time-lapse seismic response of a field and successfully applies and compares the family of particle swarm optimizers for joint inversion of production and time-lapse seismic data of the Norne field. The contributions from this research include a systematic workflow for joint inversion of time-lapse seismic and production data that can be and has been practically applied to a real field. Better reservoir models, constrained to both data will in turn lead to better reservoir forecasts and better field management. The first part of this thesis uses Norne field data to analyze sensitive parameters in joint inversion of production and time-lapse seismic data. An experimental design is performed on the parameters of the reservoir and seismic simulator. The results are used to rank the parameters in terms of sensitivity to production and time-lapse seismic data. At the same time it is shown that porosity/permeability models is not the most sensitive parameter for joint inversion of production and time-lapse seismic data of the Norne field. The parameters selected for study are porosity and permeability model, relative permeability, rock physics models, pore compressibility and fluid mixing. Results show that rock physics model has the most impact on time-lapse seismic whereas relative permeability is the most important parameter for production response. The results of this study are used in selecting the most important reservoir parameters for joint inversion of time-lapse seismic and production data of the Norne field. It is established that rock physics model is the most sensitive parameter for modeling time-lapse seismic of the Norne field, but there are rock physics parameters associated with rock physics model that impact time-lapse seismic modeling. So it is necessary to identify sensitive rock physics parameters for modeling time-lapse seismic response. Thus, the second part of this thesis identifies sensitive rock physics parameters in modeling time-lapse seismic response of Norne field. At first facies are classified based on well log data. Then sensitive parameters are investigated in the Gassmann's equation to generate the initial seismic velocities. The investigated parameters include mineral properties, water salinity, pore-pressure and gas-oil ratio (GOR). Next, parameter sensitivity for time-lapse seismic modeling of the Norne field is investigated. The investigated rock physics parameters are clay content, cement, pore-pressure and mixing. This sensitivity analysis helps to select important parameters for time-lapse (4D) seismic history matching which is an important aspect of joint inversion of production and time-lapse seismic of a field. Joint inversion of seismic and flow data for reservoir parameter is highly non-linear and complex. Local optimization methods may fail to obtain multiple history matched models. Recently stochastic optimization based inversion has shown very good results in the integration of time-lapse seismic and production data in reservoir history matching. Also, high dimensionality of the inverse problem makes the joint inversion of both data sets computationally expensive. High dimensionality of the inverse problem can be solved by using reduced order models. In this study, principal component bases derived from the prior is used to accomplish this. In the third part of the dissertation a family of particle swarm optimizers is used in combination with principal component bases for inversion of a synthetic data set. The performance of the different particle swarm optimizers is analyzed, both in terms of the quality of history match and convergence rate. Results show that particle swarm optimizers have very good convergence rate for a synthetic case. Also, these optimizers are used in combination with multi-dimensional scaling (MDS) to provide a set of porosity models whose simulated production and time-lapse seismic responses provide satisfactory match with the observed production and time-lapse seismic data. The goal of the last part is to apply the results of previous parts in joint inversion of production and time-lapse seismic data of the Norne field. Time-lapse seismic and production data of the Norne field is jointly inverted by varying the sensitive parameters identified in previous chapters and using different particle swarm optimizers. At first the time-lapse seismic surveys of the Norne field acquired in 2001 and 2004 is quantitatively interpreted and analyzed. Water was injected in the oil and gas producing Norne reservoir and repeat seismic surveys were conducted to monitor the subsurface fluids. The interpreted P-wave impedance change between 2001 and 2004 is used in the joint inversion loop as time-lapse seismic data. The application of different particle swarm optimizers provides a set of parameters whose simulated responses provide a satisfactory history match with the production and time-lapse seismic data of Norne field. It is shown that particle swarm optimizers have potential to be applied for joint inversion of the production and time-lapse seismic data of a real field data set.

Description

Type of resource text
Form electronic; electronic resource; remote
Extent 1 online resource.
Publication date 2013
Issuance monographic
Language English

Creators/Contributors

Associated with Suman, Amit
Associated with Stanford University, Department of Energy Resources Engineering.
Primary advisor Mukerji, Tapan, 1965-
Thesis advisor Mukerji, Tapan, 1965-
Thesis advisor Aziz, Khalid
Thesis advisor Mavko, Gary, 1949-
Advisor Aziz, Khalid
Advisor Mavko, Gary, 1949-

Subjects

Genre Theses

Bibliographic information

Statement of responsibility Amit Suman.
Note Submitted to the Department of Energy Resources Engineering.
Thesis Thesis (Ph.D.)--Stanford University, 2013.
Location electronic resource

Access conditions

Copyright
© 2013 by Amit Suman
License
This work is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported license (CC BY-NC).

Also listed in

Loading usage metrics...