Topological insulator and magnetically doped topological insulator thin films by molecular beam epitaxy

Placeholder Show Content

Abstract/Contents

Abstract
Searching for energy dissipation-less systems has become increasingly important for low power electronic devices. Topological insulators, a new topological state of quantum matter, have recently been proposed as an emerging material for use in low power electronics, because of the unique transport along its topologically protected edge/surface states. In addition, it has been predicted that the incorporation of magnetic elements into topological insulators could lead to the quantum anomalous Hall state, which is a truly dissipation-less system. However, the material quality of topological insulator thin films remains as a major stumbling block for exploring the novel physics of topological insulators and their proposed applications. In the first part of this thesis, I will first describe an advanced thin film deposition technique, molecular beam epitaxy (MBE) and the mini-MBE system we designed and built for topological insulator thin film growth. Then I will briefly illustrate some basic principles and sample preparation methods for a variety of characterization techniques we used for the material property investigation. In the second part of this thesis, I will present the growth and characterization of topological insulator bismuth telluride thin films grown by a two-step MBE process developed as part of this research. By optimizing the growth recipe and particularly developing the two-step growth method, defect densities were significantly reduced and higher crystal and surface quality bismuth telluride thin films were achieved. The existence of a topological surface state on our bismuth telluride thin films was also confirmed. The Fermi level of our bismuth telluride thin film was tuned to very close to the bulk gap region. The successful growth of centimeter-sized, uniform, high quality topological insulator thin films provides an excellent platform for both fundamental studies of the properties of topological insulators and fabrications of mesoscopic devices. Finally, I will report on the first successful growth of gadolinium substituted bismuth telluride thin films with high Gd concentrations by MBE. We systematically investigated the crystal structure, band structure, magnetic, and electronic properties of gadolinium substituted bismuth telluride thin films. The topological surface state was found to remain intact by Gd substitution into bismuth telluride. Although ferromagnetic behavior in gadolinium substituted bismuth telluride thin films was not observed above 2K by both magnetic and magneto-transport measurements, gadolinium substituted bismuth telluride thin films were found to have a Curie susceptibility due to the paramagnetic Gd ions with an atomic magnetic moment of 6.93 Bohr magneton per Gd ion, which suggests that it is possible to realize dissipation-less transport with a small external magnetic field or with a ferromagnetic layer on top of gadolinium substituted bismuth telluride thin films.

Description

Type of resource text
Form electronic; electronic resource; remote
Extent 1 online resource.
Publication date 2013
Issuance monographic
Language English

Creators/Contributors

Associated with Li, Shuang
Associated with Stanford University, Department of Physics.
Primary advisor Harris, J. S. (James Stewart), 1942-
Thesis advisor Harris, J. S. (James Stewart), 1942-
Thesis advisor Fisher, Ian R. (Ian Randal)
Thesis advisor Zhang, Shoucheng
Advisor Fisher, Ian R. (Ian Randal)
Advisor Zhang, Shoucheng

Subjects

Genre Theses

Bibliographic information

Statement of responsibility Shuang Li.
Note Submitted to the Department of Physics.
Thesis Thesis (Ph.D.)--Stanford University, 2013.
Location electronic resource

Access conditions

Copyright
© 2013 by Shuang Li
License
This work is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported license (CC BY-NC).

Also listed in

Loading usage metrics...