Inputs of nutrients and pollutants to Hawaiian coastal waters from submarine groundwater discharge

Placeholder Show Content

Abstract/Contents

Abstract
Submarine groundwater discharge (SGD) is a spatially pervasive phenomenon that adds freshwater, nutrients, dissolved metals, bacteria, and other constituents to the coastal ocean. This dissertation investigated SGD-related inputs of nutrients and fecal indicator bacteria (Escherichia coli and Enterococcus sp.) to coastal waters in two Hawaiian locations, the north shore of Kaua'i and the Kona coast of Hawai'i. Concentrations of caffeine, which has been used previously as a wastewater tracer, were measured in groundwater and surface water on the north shore of Kaua'i. Both study areas have relatively light levels of urban and agricultural development, and maintaining good water quality is essential for their tourism-based economies, coral reefs, fisheries, and traditional way of life. Radium (Ra), an element with naturally elevated concentrations in coastal groundwater, was used as an SGD tracer and a mass-balance approach was used to quantify SGD. On the north shore of Kaua'i, agriculture was associated with higher nitrate + nitrite concentrations in the fresh SGD component, while phosphate and silica appeared to be controlled by geological differences in aquifer substrate. High ammonium concentrations in the fresh SGD component at one site may have been caused by a leaky cesspool. In Kona, no relation between urban development or agriculture and groundwater nutrient concentrations was observed, but bare lava rock was associated with higher nitrate + nitrite and silica concentrations in fresh SGD. Sites closer to golf courses also had higher nitrate + nitrite concentrations. Conservative estimates of total SGD on the north shore of Kaua'i ranged from 1.3 to 7.8 L per meter per minute, or up to 10% of Hanalei River discharge, and SGD contributed significant nitrate + nitrite inputs to Hanalei Bay. Estimates of SGD in Kona ranged from 5 to 1200 L per meter per minute, with between 10 and 100% of the brackish SGD comprised by the fresh SGD component. SGD-related water and nutrient fluxes on the Kona Coast -- where no rivers and streams are present -- were large compared to those reported for other sites worldwide. Caffeine concentrations in environmental waters on the north shore of Kaua'i ranged from 0-88 ng/L, on the low end of what has been reported for other locations. Metribuzin, an herbicide, was also detected at concentrations from 4-11 ng/L in five groundwater and surface water samples. A sensitivity analysis of Ra-based methods of estimating water ages and coastal mixing rates revealed that water ages shorter than 3 d cannot be estimated with confidence using Ra-based methods, even if the only uncertainty considered is analytical error. In conclusion, this dissertation provides new data about SGD and related inputs of nutrients and bacteria to Hawaiian coastal waters, suggests that even low levels of development may influence nutrient concentrations in coastal groundwater, presents the first caffeine concentrations measured in environmental water samples collected in a tropical setting, and explores the limits of applicability of Ra-based methods of estimating water ages and coastal mixing rates, providing guidance for researchers conducting Ra-based SGD studies in the future.

Description

Type of resource text
Form electronic; electronic resource; remote
Extent 1 online resource.
Publication date 2010
Issuance monographic
Language English

Creators/Contributors

Associated with Knee, Karen Lisa
Associated with Stanford University, Department of Geological and Environmental Sciences.
Primary advisor Boehm, Alexandria
Primary advisor Paytan, Adina, 1961-
Thesis advisor Boehm, Alexandria
Thesis advisor Paytan, Adina, 1961-
Thesis advisor Arrigo, Kevin R
Thesis advisor Grossman, Eric E
Thesis advisor Maher, Katharine
Advisor Arrigo, Kevin R
Advisor Grossman, Eric E
Advisor Maher, Katharine

Subjects

Genre Theses

Bibliographic information

Statement of responsibility Karen Lisa Knee.
Note Submitted to the Department of Geological and Environmental Sciences.
Thesis Ph. D. Stanford University 2010
Location electronic resource

Access conditions

Copyright
© 2010 by Karen Lisa Knee
License
This work is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported license (CC BY-NC).

Also listed in

Loading usage metrics...