Multi-phase and multi-scale modeling of environmental flow : from magma dynamics to pollutant transport

Placeholder Show Content

Abstract/Contents

Abstract
Environmental flows dynamically change the solid earth, form a key part of various ecosystems, and deeply shape our society. Pursuing sustainability requires advancing our understanding of various environmental flow systems, because they are associated with resources, environmental health, and natural hazards. However, establishing a comprehensive understanding of these systems is usually challenging because of the complexity of earth systems and the difficulty in directly observing the dynamically evolving flows. Numerical modeling have been an important approach in studying environmental flows, because it can both patch together available data to form a consistent picture of unobservable processes and decode the information in observations to help improving our interpretation of the valuable data. In this dissertation we present model frameworks that bridge numerical models with data for two types of environmental flows, magmatic flow in volcanic systems and pollution of surface water. The motivation of focusing on these two systems is to provide insights for tackling challenges in natural hazard and environmental enforcement. In Chapter 1, we introduce the context and challenges of studying environmental flows and provide an overview of each chapter. In Chapter 2, we present a model framework for quantifying the magma mixing in the conduit flow of persistently degassing volcanoes. This model framework consists of a conduit-flow model that simulates the dynamics of bubble-bearing magma in volcanic conduits, and a volatile-concentration model that bridges magma mixing with melt and gas composition. By quantifying how different rates of magma mixing in conduit flow alters the volatile concentrations of melt at depth and the compositions of volcanic gas, this study demonstrates that the observed compositions of melt inclusion and surface gas flux support the bidirectional conduit flow in persistently degassing volcanoes. In Chapter 3, we investigate the formation mechanism of quartz-hosted embayments and melt inclusions during the crystallization of silicic magma using direct numerical simulations. By integrating crystal growth, the evolution of water concentrations, and the flow of surrounding melt, this chapter proposes a formation mechanism of embayments and melt inclusions and provides new insights for interpreting their compositions. We find that water is more enriched in the interior of defects on crystal surface compared to the exterior because the removal of water from the interior is less efficient. The resultant lower disequilibrium in the defect interior causes lower growth rate than in the exterior, elongating the defect into an embayment. The melt entrapped by both embayments and melt inclusions may be enriched in incompatible components, such as water and carbon dioxide. The degree of enrichment depends on inclusion size, component abundance, the crystal growth regime, and the post-formation equilibration with surrounding melt. In Chapter 4, we propose a model framework for attributing agricultural phosphorus pollution in a river network at high spatiotemporal resolutions and to specific source types. This model framework consists of a forward model of nutrient transport and an inverse model with statistical inferences. We construct the prior distributions of source contributions by integrating data of nutrient input, nutrient uptake, and land use. We develop the nutrient transport model based on the river network and stream flow data. With the water-quality data, we update the prior distribution using the Approximate Bayesian Computation method to generate the posterior distributions of source contributions. Our attribution results reveal significant variability in subwatershed-scale phosphorus release. Phosphorus release is higher during spring planting than the growing period, with fertilizer contributing more SRP than manure and manure contributing most of the UP. The results also suggest locations for additional water-quality monitors by identifying regions with high contributions but ambiguous attribution results due to the lack of water-quality measurements and disagreements between existing datasets of nutrient input.

Description

Type of resource text
Form electronic resource; remote; computer; online resource
Extent 1 online resource.
Place California
Place [Stanford, California]
Publisher [Stanford University]
Copyright date 2023; ©2023
Publication date 2023; 2023
Issuance monographic
Language English

Creators/Contributors

Author Wei, Zihan
Degree supervisor Suckale, Jenny
Thesis advisor Suckale, Jenny
Thesis advisor Dunham, Eric
Thesis advisor Pamukcu, Ayla Susan
Degree committee member Dunham, Eric
Degree committee member Pamukcu, Ayla Susan
Associated with Stanford Doerr School of Sustainability
Associated with Stanford University, Department of Geophysics

Subjects

Genre Theses
Genre Text

Bibliographic information

Statement of responsibility Zihan Wei.
Note Submitted to the Department of Geophysics.
Thesis Thesis Ph.D. Stanford University 2023.
Location https://purl.stanford.edu/ps426bx0443

Access conditions

Copyright
© 2023 by Zihan Wei
License
This work is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported license (CC BY-NC).

Also listed in

Loading usage metrics...