Absorbing optical antennas : applications in nanophotonics and combustion

Placeholder Show Content

Abstract/Contents

Abstract
The promise of optical antennas is the ability to tame the light to behave in ways not achievable using traditional optical components. For example, our results here demonstrate that a careful engineering of optical antennas allow the strong, even perfect, absorption of light in ultra-thin geometries, i.e., geometries much thinner than the wavelength of light. Enabled by geometry-sensitive antenna resonances, this absorption behavior can also be realized for a broad selection of colors. A detailed theoretical analysis of the observed perfect absorption phenomenon reveals the role of incoherently interacting degenerate electric and magnetic resonances in overcoming the well-known absorption limit for infinitesimally thin films. With another set of experiments, we show that strongly absorbed optical energy in aluminum nanoantennas can be used to heat them efficiently above their melting temperature and stimulate an explosive exothermic oxidation reaction called melt-dispersion mechanism. Importantly, we see that engineering the specific geometry of the constituent particles allows an unprecedented control of aluminum ignition, both spectrally and spatially, through the fine tuning of the optical antenna resonances.

Description

Type of resource text
Form electronic; electronic resource; remote
Extent 1 online resource.
Publication date 2018
Issuance monographic
Language English

Creators/Contributors

Associated with Mutlu, Mehmet
Associated with Stanford University, Department of Electrical Engineering.
Primary advisor Brongersma, Mark L
Thesis advisor Brongersma, Mark L
Thesis advisor Fan, Shanhui, 1972-
Thesis advisor Miller, D. A. B
Advisor Fan, Shanhui, 1972-
Advisor Miller, D. A. B

Subjects

Genre Theses

Bibliographic information

Statement of responsibility Mehmet Mutlu.
Note Submitted to the Department of Electrical Engineering.
Thesis Thesis (Ph.D.)--Stanford University, 2018.
Location electronic resource

Access conditions

Copyright
© 2018 by Mehmet Mutlu

Also listed in

Loading usage metrics...