Pre-Print Supplementary Information: "Design Principles for Maximizing Photovoltage in Metal-Oxide-Protected Water-Splitting Photonanodes" published Oct 2015 in Nature Materials

Placeholder Show Content

Abstract/Contents

Abstract
Metal oxide protection layers for photoanodes may enable the development of large-scale solar fuel and solar chemical synthesis, but the poor photovoltages often reported so far will severely limit their performance. Here we report a novel observation of photovoltage loss associated with a charge extraction barrier imposed by the protection layer, and, by eliminating it, achieve photovoltages as high as 630 mV, the maximum reported so far for water-splitting silicon photoanodes. The loss mechanism is systematically probed in metal–insulator–semiconductor Schottky junction cells compared to buried junction pn cells, revealing the need to maintain a characteristic hole density at the semiconductor/insulator interface. A leaky-capacitor model related to the dielectric properties of the protective oxide explains this loss, achieving excellent agreement with the data. From these findings, we formulate design principles for simultaneous optimization of built-in field, interface quality, and hole extraction to maximize the photovoltage of oxide-protected water-splitting anodes.

Description

Type of resource software, multimedia
Date created October 2015

Creators/Contributors

Author McIntyre, Paul
Author Scheuermann, Andrew
Author Chidsey, Christopher

Subjects

Subject artificial photosynthesis
Subject solar fuels
Subject atomic layer deposition
Subject photoelectrochemical cell
Subject water splitting
Subject protection layer
Subject photovoltage
Subject photoanode
Subject water oxidation
Subject leaky capacitor
Genre Dataset

Bibliographic information

Access conditions

Use and reproduction
User agrees that, where applicable, content will not be used to identify or to otherwise infringe the privacy or confidentiality rights of individuals. Content distributed via the Stanford Digital Repository may be subject to additional license and use restrictions applied by the depositor.

Collection

Contact information

Also listed in

Loading usage metrics...