Binary and rare earth-doped topological insulator thin films

Placeholder Show Content

Abstract/Contents

Abstract
Topological insulators (TIs) are a newly discovered class of electronic materials which are characterized by an insulating bulk band gap and metallic conducting edge/surface states. Their novel electronic band structure arises from strong spin-orbit coupling that leads to bulk energy band inversion which necessitates the formation of metallic states at their physical boundaries with dissimilar materials. These metallic edge/surface states have intriguing spin-momentum locking properties and a very robust nature, due to scattering protection by time-reversal symmetry (TRS), which make them interesting from both a fundamental science perspective as well as for their potential use in future generation electronic and spintronic applications. Recently, the discovery of the three-dimensional (3D) TIs in the bismuth telluride family of materials has provided an exciting new direction for TI research. The surface states on these 3D TIs are detectable at room temperature which eases the harsh requirements previously needed to study TIs and increases their potential for use in practical applications. As commercially successful thermoelectric materials, the use of widely accessible bulk crystals of the bismuth telluride family of 3D TIs has enabled early studies of their topological surface states. However, a prerequisite for realizing many proposed TI applications is the synthesis of high crystalline quality thin films which necessitates efforts in thin film materials engineering. In addition, a new area of TI materials research has also recently emerged around breaking the TRS in 3D TIs by inducing ferromagnetism through magnetic doping. This approach is predicted to provide a promising route for realizing exotic physical states, such as the recently discovered quantum anomalous Hall state. However, exploring magnetically induced phenomena has been experimentally challenging which has prompted the search for alternative TI systems through fundamental magnetic doping studies. This dissertation focuses on the growth and characterization of binary and rare earth-doped bismuth telluride thin films. All samples were fabricated using molecular beam epitaxy (MBE) and their structural, electronic, and magnetic properties were characterized using a comprehensive set of surface- and bulk-sensitive analytical techniques. The development of a new two-temperature step MBE growth process for bismuth telluride thin films is presented. The two-step method is shown to yield films of high crystallinity with significantly improved material properties over films grown using other growth recipes. This growth technique served as the starting platform for other studies presented in this work, including investigations into surface preparation techniques for ex situ grown TI thin films and magnetic doping studies with rare earth elements. Major shortcomings of conventional preparation techniques for preserving or restoring the surface of air exposed TI films are also presented. Commonly employed sputter cleaning is shown to be incompatible with TI samples that are prone to severe oxidation such as magnetically doped TIs. Se- and Te-capping layer studies provide new evidence that this commonly employed technique is ineffective at preserving the as-grown properties of bismuth telluride thin films. Alternatively, the efficacy of in situ cleaving for preparation of clean binary and rare earth-doped TI surfaces is demonstrated. Finally, the first experimental work on MBE-grown Dy-doped bismuth telluride thin films is presented. X-ray studies reveal that large concentrations of Dy, ranging from 0% to 35.5% (in % of the Bi sites), can be incorporated into the host bismuth telluride crystal lattice without the formation of secondary phases. A subset of films in the doping series are shown to maintain a high degree of crystallinity with evidence for substitutional doping of Dy and the absence of intercalation in the van der Waals gaps. Electronic band structure measurements show that there is a critical Dy doping concentration above which evidence for a sizable gap (tens of meV) in the surface state is detected. Bulk magnetometry reveals paramagnetic behavior down to low temperatures for all samples in the doping series. The use of rare earth dopants introduces the highest magnetic moments into a TI system, which could have a transformative potential for TI-based applications in the future.

Description

Type of resource text
Form electronic; electronic resource; remote
Extent 1 online resource.
Publication date 2015
Issuance monographic
Language English

Creators/Contributors

Associated with Harrison, Sara Elizabeth
Associated with Stanford University, Department of Electrical Engineering.
Primary advisor Harris, J. S. (James Stewart), 1942-
Thesis advisor Harris, J. S. (James Stewart), 1942-
Thesis advisor Kamins, Theodore I
Thesis advisor Wong, Hon-Sum Philip, 1959-
Advisor Kamins, Theodore I
Advisor Wong, Hon-Sum Philip, 1959-

Subjects

Genre Theses

Bibliographic information

Statement of responsibility Sara Elizabeth Harrison.
Note Submitted to the Department of Electrical Engineering.
Thesis Thesis (Ph.D.)--Stanford University, 2015.
Location electronic resource

Access conditions

Copyright
© 2015 by Sara Elizabeth Harrison

Also listed in

Loading usage metrics...