Atomic layer deposition (ALD) : mechanisms and hybrid materials for energy applications

Placeholder Show Content

Abstract/Contents

Abstract
Modern society demands smaller, more precise devices for both microelectronic and energy technologies. The development of methods and processes that can deposit reliably uniform, conformal thin films on the nanoscale is essential to fields as diverse as catalysts and solar cells. Therefore, atomic layer deposition (ALD), a thin-film deposition technique that accomplishes these goals by using self-limiting sequential reactions between alternating precursors to achieve atomic precision over the product film, is an important tool for the modern era. Combining ALD with molecular layer deposition (MLD), which follows the same principles as ALD but deposits entire organic molecules to build films, results in a powerful system that enables the deposition of inorganic, organic, and hybrid inorganic-organic materials. Understanding the nucleation mechanisms, surface reaction chemistry, and applications of these materials and ALD/MLD processes is essential to commercialization and wider use. Through in situ Fourier transform infrared (FTIR) spectroscopy, we studied the zinc-tin-oxide (ZTO) system, a ternary ALD process that is a combination of the zinc oxide and tin oxide binary ALD processes. Previous research had indicated that the ternary system is characterized by non-idealities in the ALD growth, and we identify as a potential cause of these effects incomplete removal of the ligands from the tetrakis(dimethylamino)tin precursor, which leads to a nucleation delay when depositing ZnO on SnO2. A significant fraction of the ligands remain on the surface during the ALD of SnO2 and endure when the process is switched to ZnO ALD. This result suggests that the occupation of surface reactive sites by these persisting ligands may be the cause of the observed nucleation delay with potential ramifications for many other binary and ternary systems where persisting ligands may be present. In addition, we studied the mechanism of ALD-grown MoS2 thin films. It was observed by atomic force microscopy (AFM), grazing incidence small angle X-ray scattering (GISAXS), and X-ray reflectivity (XRR) that nucleation proceeds by the formation of small islands that coalesce into a complete film in under 100 cycles, with further film growth failing to occur after coalescence. This inertness is attributed to the chemical inactivity of the basal planes of MoS2. It was found that the final thickness of the as-grown film is not determined by the number of ALD cycles as per the normal regime, but by the temperature that the film is deposited at. This self-limiting layer synthesis (SLS) has been reported in the literature for higher temperature depositions of MoS2, but this is the first report of the effect in a low temperature, amorphous MoS2 ALD system. The thickness of films growth by ALD with the precursors Mo(CO)6 and H2S was found to saturate at around 7 nm on both native oxide-covered silicon and bulk crystalline MoS2 substrates, which may indicate that the SLS behavior is inherent to the ALD process and not substantially a product of the substrate surface potential. Finally, we demonstrated a new ALD/MLD hybrid process that used the MoS2 ALD precursor Mo(CO)6 and the counter reagent 1,2-ethanedithiol to create a MoS2-like material with organic domains. This Mo-thiolate possesses many properties that link it to MoS2, such as activity towards the hydrogen evolution reaction (HER) and similar Raman modes, but has a significantly lower density, optical transparency, and higher geometric surface area. It was found that the process has a 1.3 Å growth per cycle and can catalyze the HER reaction at an overpotential of 294 mV at -10 mA/cm2 , which is superior to planar MoS2 and ranks the as-deposited catalyst with the best nanostructured MoS2-based catalysts. We propose that this activity comes from the higher surface area induced by the incorporation of organic chains into the films. In summary, we explored the mechanisms and nucleation behavior of several ALD systems of interest to energy applications using both in situ and ex situ analysis techniques. These studies demonstrated the importance of understanding ALD surface chemistry to the overall chemical composition of the resultant films, the ramifications of different nucleation regimes in determining morphologies, and the power of ALD/MLD in creating analogues to previously known species with improved physical properties.

Description

Type of resource text
Form electronic resource; remote; computer; online resource
Extent 1 online resource.
Place California
Place [Stanford, California]
Publisher [Stanford University]
Copyright date 2018; ©2018
Publication date 2018; 2018
Issuance monographic
Language English

Creators/Contributors

Author MacIsaac, Callisto Joan
Degree supervisor Bent, Stacey
Thesis advisor Bent, Stacey
Thesis advisor Fayer, Michael D
Thesis advisor Zare, Richard N
Degree committee member Fayer, Michael D
Degree committee member Zare, Richard N
Associated with Stanford University, Department of Chemistry.

Subjects

Genre Theses
Genre Text

Bibliographic information

Statement of responsibility Callisto MacIsaac.
Note Submitted to the Department of Chemistry.
Thesis Thesis Ph.D. Stanford University 2018.
Location electronic resource

Access conditions

Copyright
© 2018 by Callisto Joan MacIsaac
License
This work is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported license (CC BY-NC).

Also listed in

Loading usage metrics...