Towards a practical modeling approach for low temperature oxidation of fuels

Placeholder Show Content

Abstract/Contents

Abstract
The diversity of reactivities, intermediates, and pathways associated with the low-temperature oxidation of various component classes that constitute real fuels is perhaps the most challenging aspect of modeling combustion chemistry of these fuels. Unlike high-temperature oxidation (T > 1000 K), where the law of large numbers renders global combustion properties of real, multicomponent fuels weakly sensitive to compositional variability, reactions controlling low-temperature oxidation are very sensitive to fuel composition. Despite this fuel specificity, the formation of intermediates during low-temperature oxidation exhibits certain commonalities which can be observed in carefully designed shock tube experiments. Combining these observations with elemental balance, chemical kinetic considerations, and with the already mature Hybrid Chemistry (HyChem) approach for high-temperature oxidation of real fuels, I first propose an approach to develop simplified, physics-based chemical kinetic models for low-temperature oxidation of real fuels. In this approach, the low-temperature oxidation is described by lumped, fuel-specific reactions whose rate constants and stoichiometric parameters are determined using shock tube species time history measurements. These reactions augment the already developed high-temperature HyChem models which encompass fuel-specific reactions describing thermal and oxidative pyrolysis at high temperatures, and a detailed model describing kinetics of small hydrocarbons. Detailed arguments in support of the model formulation are presented. The model is then exercised to identify species to be targeted for measurements in shock tubes. Carbon monoxide (CO), and formaldehyde (CH2O) were identified as the most important species for determining the model parameters followed by OH, and HO2. Laser absorption spectroscopy based diagnostics for measuring some of these species were also developed in parallel with this work. The feasibility of the targeted speciation studies is first demonstrated during oxidation of five neat hydrocarbons, i.e., n-decane, n-octane, n-heptane, and its two branched isomers, 2-methyl hexane, and 3,3-dimethyl pentane. These studies not only demonstrated the feasibility of the diagnostics, but also highlighted the deficiency in the existing detailed models for low-temperature oxidation of heavy hydrocarbons. They also provided further evidence supporting some of the assumptions made while formulating the LT-HyChem approach. With the speciation strategy developed, and target experimental conditions verified, the application of the LT-HyChem approach to three classes of fuels is presented: a) A simple, three-component hydrocarbon mixture (TPRF-60), b) A jet fuel, c) Two high-performance gasoline fuels. Validation of the model against a range of ignition delay time (IDT) measurements conducted across a range of facilities worldwide is presented. The model predictions for all fuels show excellent agreement with the IDTs reported in the literature over a wide range of conditions. Moreover, the constraints imposed on the model parameters by the species time history measurements conducted in shock tubes result in a significant reduction in the uncertainty in the model's predictions. A detailed uncertainty analysis is presented and is supplemented with sensitivity analysis to identify the dominant contributing factors to the uncertainty in model predictions. The success of the LT-HyChem approach is encouraging as this approach can be extended to the sustainable fuels that will drive the engines of tomorrow. This will enable a rapid screening of candidates for the sustainable fuels of tomorrow.

Description

Type of resource text
Form electronic resource; remote; computer; online resource
Extent 1 online resource.
Place California
Place [Stanford, California]
Publisher [Stanford University]
Copyright date 2022; ©2022
Publication date 2022; 2022
Issuance monographic
Language English

Creators/Contributors

Author Choudhary, Rishav
Degree supervisor Hanson, Ronald
Thesis advisor Hanson, Ronald
Thesis advisor Bowman, Craig T. (Craig Thomas), 1939-
Thesis advisor Wang, Hai, 1962-
Degree committee member Bowman, Craig T. (Craig Thomas), 1939-
Degree committee member Wang, Hai, 1962-
Associated with Stanford University, Department of Mechanical Engineering

Subjects

Genre Theses
Genre Text

Bibliographic information

Statement of responsibility Rishav Choudhary.
Note Submitted to the Department of Mechanical Engineering.
Thesis Thesis Ph.D. Stanford University 2022.
Location https://purl.stanford.edu/dp102ng8945

Access conditions

Copyright
© 2022 by Rishav Choudhary
License
This work is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported license (CC BY-NC).

Also listed in

Loading usage metrics...