Boiling Radial Flow in Fractures of Varying Wall Porosity

Placeholder Show Content

Abstract/Contents

Abstract
The focus of this report is the coupling of conductive heat transfer and boiling convective heat transfer, with boiling flow in a rock fracture. A series of experiments observed differences in boiling regimes and behavior, and attempted to quantify a boiling convection coefficient. The experimental study involved boiling radial flow in a simulated fracture, bounded by a variety of materials. Nonporous and impermeable aluminum, highly porous and permeable Berea sandstone, and minimally porous and permeable graywacke from The Geysers geothermal field. On nonporous surfaces, the heat flux was not strongly coupled to injection rate into the fracture. However, for porous surfaces, heat flux, and associated values of excess temperature and a boiling convection coefficient exhibited variation with injection rate. Nucleation was shown to occur not upon the visible surface of porous materials, but a distance below the surface, within the matrix. The depth of boiling was a function of injection rate, thermal power supplied to the fracture, and the porosity and permeability of the rock. Although matrix boiling beyond fracture wall may apply only to a finite radius around the point of injection, higher values of heat flux and a boiling convection coefficient may be realized with boiling in a porous, rather than nonporous surface bounded fracture.

Description

Type of resource text
Date created June 2000

Creators/Contributors

Author Barnitt, Robb A.
Primary advisor Horne, Roland N.
Degree granting institution Stanford University, Department of Petroleum Engineering

Subjects

Subject School of Earth Energy & Environmental Sciences
Genre Thesis

Bibliographic information

Access conditions

Use and reproduction
User agrees that, where applicable, content will not be used to identify or to otherwise infringe the privacy or confidentiality rights of individuals. Content distributed via the Stanford Digital Repository may be subject to additional license and use restrictions applied by the depositor.

Preferred citation

Preferred Citation
Barnitt, Robb A. (2000). Boiling Radial Flow in Fractures of Varying Wall Porosity. Stanford Digital Repository. Available at: https://purl.stanford.edu/bh997cm9774

Collection

Master's Theses, Doerr School of Sustainability

View other items in this collection in SearchWorks

Contact information

Also listed in

Loading usage metrics...