Motion artifact reduction in steady-state magnetic resonance imaging

Placeholder Show Content

Abstract/Contents

Abstract
Magnetic resonance imaging (MRI) is a powerful medical imaging modality that offers excellent soft-tissue contrast and numerous contrast-generation mechanisms. However, due to the relatively low signal-to-noise ratio (SNR) of MRI, many volumetric and high-resolution imaging techniques require long acquisition times yielding an increased sensitivity to motion. In many cardiac MRI applications, one of the most significant challenges is the reduction of motion artifacts caused by cardiac and respiratory motion. In these applications, a combination of SNR-efficient balanced steady-state free precession (bSSFP) pulse sequences, high-temporal-resolution motion tracking acquisitions, and retrospective motion correction algorithms are commonly employed to mitigate motion artifacts. Despite recent advances in steady-state pulse sequence development, navigator motion tracking acquisitions, and motion correction algorithms, motion artifact reduction continues to be a significant challenge for many cardiac MRI applications. A novel class of perturbed steady-state free precession (SSFP) pulse sequences is developed and analyzed, yielding new forms of steady-state image contrast. These sequences utilize alternating perturbations of sequence parameters such as the repetition time (TR) and flip angle to produce oscillating steady-state frequency responses. Large oscillations of the signal magnitude and phase occur at specific off-resonant frequencies, and the combination of these signals can yield spectrally selective image contrast. Applications are demonstrated for retrospective motion correction using cardiac fat navigator acquisitions in free-breathing whole-heart cardiac MRI and for positive-contrast imaging of superparamagnetic iron-oxide nanoparticles. The bSSFP pulse sequence is widely used in cardiac imaging due to its high signal per unit time and excellent blood-myocardial contrast. A drawback of this pulse sequence is the generation of bright signal from fat, which can lead to unwanted image artifacts. Alternating repetition time (ATR) SSFP is a recently developed sequence that generates fat-suppressed steady-state contrast, but it requires the addition of an unused time interval every repetition, making it less time efficient than bSSFP. A small modification to the ATR pulse sequence is proposed to enable the acquisition of a one-dimensional self-gating signal during this unused time interval. The self-gating signals are used for retrospective cardiac triggering in breath-held cardiac cine imaging, and the proposed sequence is evaluated in volunteer and patient populations. The resulting ECG-free self-gated images have no statistically significant differences compared with conventional ECG-gated images. The proposed sequence also yields robust suppression of epicardial fat compared with standard bSSFP cardiac cine imaging. In coronary MR angiography (CMRA), high-resolution, whole-heart acquisitions are typically required for visualization of the relatively small coronary vasculature. These acquisitions require long scan times that are carried out during free breathing, which can lead to severe ghosting and blurring artifacts without motion compensation. A nonrigid retrospective motion correction technique is proposed for motion artifact reduction in image-navigated CMRA. The technique reconstructs a bank of motion-compensated CMRA images using many candidate motion estimates derived from navigator images acquired throughout the scan. A metric-based autofocusing approach is used to automatically generate a final nonrigid-motion-corrected image from this bank of images. The proposed technique is evaluated in volunteer and patient studies, leading to improvements in vessel sharpness and image quality compared with rigid-body translational motion correction. These new steady-state pulse sequences, motion tracking acquisitions, and nonrigid reconstruction techniques address several of the challenges to cardiac MRI, enabling the reduction of motion artifacts and improvement of image quality.

Description

Type of resource text
Form electronic; electronic resource; remote
Extent 1 online resource.
Publication date 2014
Issuance monographic
Language English

Creators/Contributors

Associated with Ingle, Richard Reeve
Associated with Stanford University, Department of Electrical Engineering.
Primary advisor Nishimura, Dwight George
Thesis advisor Nishimura, Dwight George
Thesis advisor Hargreaves, Brian Andrew
Thesis advisor McConnell, Michael
Thesis advisor Pauly, John (John M.)
Advisor Hargreaves, Brian Andrew
Advisor McConnell, Michael
Advisor Pauly, John (John M.)

Subjects

Genre Theses

Bibliographic information

Statement of responsibility Richard Reeve Ingle.
Note Submitted to the Department of Electrical Engineering.
Thesis Thesis (Ph.D.)--Stanford University, 2014.
Location electronic resource

Access conditions

Copyright
© 2014 by Richard Reeve Ingle
License
This work is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported license (CC BY-NC).

Also listed in

Loading usage metrics...